4. コントローラ

4.1 仕様

4.1.1 コントローラ仕様 型式 XA-C4

【対応するアクチュエータ】

XA-20L

XA-28L/28H

XA-35L/35H

XA-42L/42H/42D

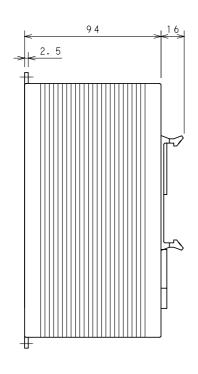
XA-E35L

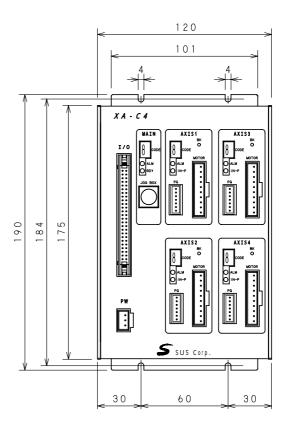
コントローラは共通ですが、各アクチュエータに 対応した電流設定をしてあります。

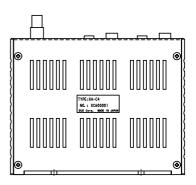
コントローラ上面に貼ってある、アクチュエータ 型式シールをご確認の上、接続してください。

項目	仕 様			
電源電圧・容量	DC24V ±5% 最大 6A *1			
位置決めポイント数	999 点			
位置制御	オープンループ + 位置補正(エンコーダ付きの場合)			
外部入出力	DC24V 専用入力 1 7 点 専用出力 1 7 点 DC24V 汎用入力 4 点 汎用出力 4 点			
記 憶 装 置	EEPROM			
モータドライバ	2 相ユニポーラ ハーフステップ駆動			
データ入力	専用ジョグボックス、パソコン			
通信機能	EIA RS232C準拠			
重量	約 1300g			
使用周囲温度・湿度	温度 0~40°C 湿度 85%RH 以下 結露なきこと			
使 用 場 所	屋内で直射日光が当たらない場所			
使用周囲雰囲気	腐食性ガス・オイルミスト・引火性ガス・塵埃のないこと			
保存温度・湿度	温度 -10~50 湿度 85%RH 以下 結露、凍結なきこと			

* 1

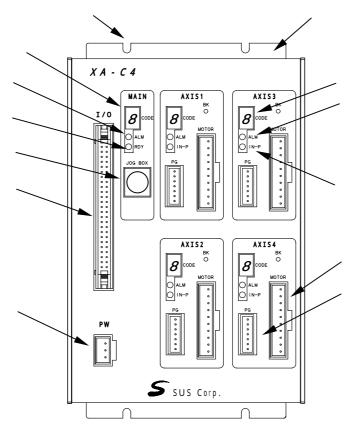

接続するアクチュエータによって動作時の 消費電流が変わります。


1軸あたりの消費電流は右表のとおりです。


X A - 2 0	約0.3A
X A - 28	約1.0A
X A - 3 5	約1.0A
X A - 4 2	約1.0A

動作時の消費電流 = 1 軸目消費電流 + 2 軸目消費電流 + 3 軸目消費電流 + 4 軸目消費電流 電源ON時の突入電流を含めた最大電流値が6Aです。

4 . 1 . 2 コントローラ外形寸法図



4.2 各部の名称

XA-C4コントローラ各部の名称を説明します。

取り付け穴

上下4ヶ所で固定してください。

通気孔

熱を逃がすためのものです。 塞がないでください。

CODE 表示

状態をコードで表示します。

ALM 表示

アラーム発生時に点灯します。

RDY 表示

コントローラが正常で点灯します。

ジョグボックスコネクタ ジョグボックス、パソコンの接続用 コネクタです。

I / O

外部入出力コネクタです。 外部機器とのインターフェース用。

PW

電源接続用のコネクタです。

軸 CODE 表示

各軸の状態をコードで表示します。

軸 ALM 表示

各軸のアラーム発生時に点灯します。

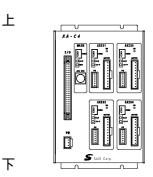
軸 IN - P 表示

各軸の、軸停止中に点灯します。

MOTOR

モータケーブル接続用のコネクタです。

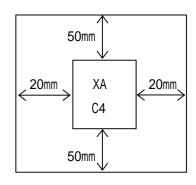
PG


エンコーダケーブル接続用の コネクタです。

4.3 設置方法

4.3.1 コントローラの設置

コントローラの設置について説明します。次の注意事項を守りご使用下さい。


取り付け方向は垂直にして下さい。 ジョグボックスコネクタが上にくる方向

取り付けは鉄板、アルミ板等の熱伝導の良い物にしっかりとネジ止めしてください。 また、コントローラを密閉された盤内に設置する場合は、熱がこもらないよう、ファン 等を設置してください。

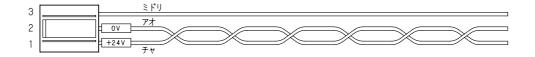
放熱のために、コントローラの周辺は 右図のようなスペースを確保してください。

上下 50mm 以上 左右 20mm 以上

コントローラの通気孔から内部に異物が入らないようにしてください。

高温・多湿、及びホコリ、鉄粉、切削油等の粉塵が多い場所での使用は避けてください。

直射日光があたる場所での使用は避けてください。


振動がある場所での使用は避けてください。

4.3.2 コントローラへの接続

(1)電源の配線

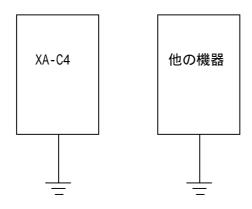
電源はDC24V±5% 最大6Aを PWコネクタへ接続して下さい。 安全のため、供給される電源を外部機器にて開閉する回路を設けてください。

【茶】 + 2 4 V 【青】 0 V 【緑】F G

⅓

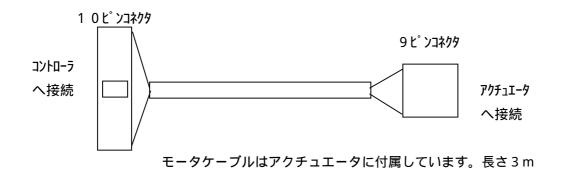
電源を逆接続されますとコントローラが破損します。

コントローラへの電源投入前に、コネクタをコントローラから抜いた状態で テスター等で電圧チェックを行って下さい。


電源ケーブルはコントローラに付属しています。長さ50cm

(2)接地線の接続

PWコネクタの緑の配線を接地して下さい。(D種接地)


また、接地線を他の機器と共用すると、ノイズの影響を受ける可能性がありますので 必ず専用で接地してください。

接地は専用で

(3)モータケーブルの配線

モータケーブルはアクチュエータとコントローラ間を接続するケーブルです。
10ピンのコネクタをコントローラのMOTORコネクタへ接続します。
9ピンのコネクタをアクチュエータのモータリードのコネクタへ接続します。

モータケーブルはモータ駆動用の動力線で、外部の機器に対しノイズ源となる 可能性がありますので、布線する際は次の点にご注意ください。

- 1.計測器、受信機などの機器の配線とモータケーブルを平行布線したり、 同一のダクトに布線しないでください。
- 2.計測器、受信機などの機器とできるだけ距離を離して布線してください。

(4)エンコーダケーブルの配線(エンコーダ付きの場合のみ)

エンコーダケーブルはアクチュエータとコントローラ間を接続するケーブルです。 7 ピンのコネクタをコントローラの P G コネクタへ接続します。 6 ピンのコネクタをアクチュエータのコネクタへ接続します。

エンコーダケーブルはアクチュエータに付属しています。長さ3m

エンコーダケーブルを布線する場合には、他の動力線と平行布線したり、 同一のダクトに布線しないでください。

(5)外部入出力ケーブルの配線

外部入出力ケーブルは、外部機器とコントローラを接続するケーブルです。 信号の詳細は **4.5外部入出力** の項を参照ください。

- 1.非常停止入力はb接点で接続するようになっております。
- 2.使用されない入出力信号及び、未使用の信号は端末処理を行い、他の信号線と接触しないようにしてください。
- 3.外部入出力ケーブルを布線する場合には、他の動力線と平行布線したり、 同一のダクトに布線しないでください。

外部入出力ケーブルはコントローラに付属しています。長さ2m

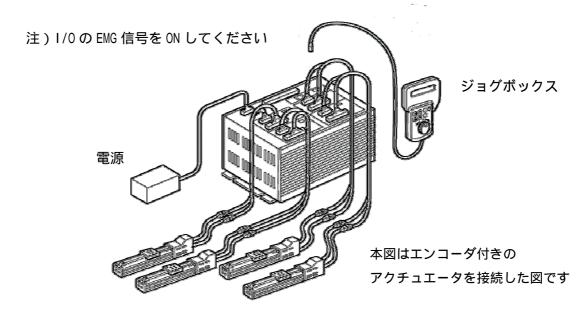
非常停止の配線について

非常停止信号はb接点入力のため、入力をONしないと動作することができません。 非常停止がOFFの時は、CODE表示部にFが表示されます。 仮に非常停止信号を入力する接続方法を下図に示します。

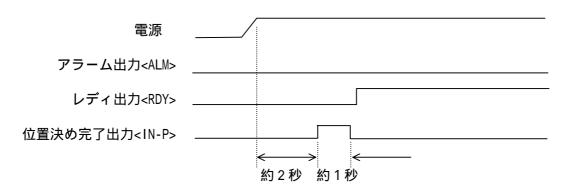
I/Oコネクタ

ピンNo.	線色	信号名	名 称		
1 A	1ーチャ		電源入力+24	 	直流電源+24V
3 A	1ーミドリ	EMG	非常停止	\longrightarrow	直流電源 ○∨

4.4 動作モード


コントローラの動作モードには、ティーチングモードと外部起動モードの2種類があります。 電源投入時 ジョグボックス接続でティーチングモードとなり、接続なしで外部起動モードと なります。したがって、モードの切り替えは一度電源をOFFにする必要があります。

4.4.1 ティーチングモード

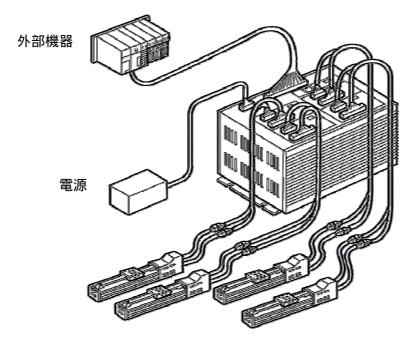

ジョグボックスを接続し、電源を投入した場合はティーチングモードになります。 この場合、IN-P 信号が約1秒間 ON した後 OFF となります。

ティーチングモードは、位置・速度等の設定を行なうモードです。

詳細は 5.ジョグボックス の項を参照下さい。

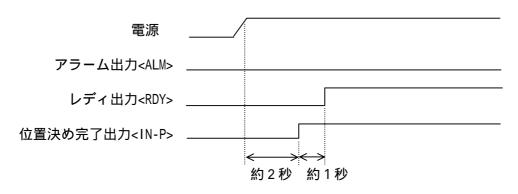
電源投入時のタイミングチャート(ティーチングモード)

レディ出力<RDY>の立ち上がり時に、位置決め完了出力が OFF の場合は、ティーチングモードであることになります。


ティーチングモードで移動を行った場合は、位置決め完了出力<IN-P>は ON しません。

4 . 4 . 2 外部起動モード

ジョグボックスを接続せず電源を投入した場合は外部起動モードとなります。 この場合、位置決め完了出力<IN-P>が ON となり、外部から位置決め動作を行なうことができます。


外部機器は、位置決め完了出力<IN-P>と、レディ出力<RDY>が ON である事を確認し、 各入力信号を与えてください。

詳細は 4.5 外部入出力の項を参照下さい。

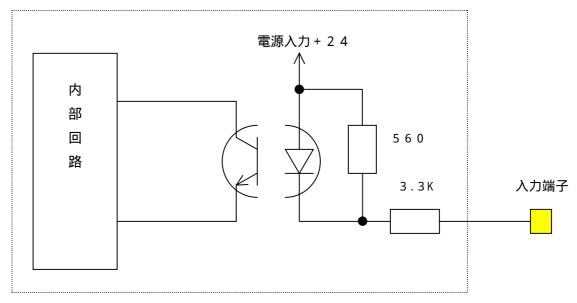
本図はエンコーダ付きのアクチュエータを接続した図です

電源投入時のタイミングチャート (外部起動モード)

レディ出力<RDY>の立ち上がり時に、位置決め完了出力が ON の場合は、外部起動モードであることになります。

外部起動モードで使用する場合は、必ずジョグボックスを取り外した状態で ご使用ください。

4.5 外部入出力


外部入出力は外部機器とのインターフェース部で、動作指令を受けたり位置決め完了等の信号を出力します。

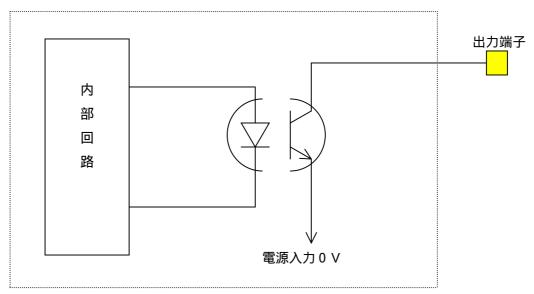
4.5.1 外部入力仕様

	項目					仕 様
)	\	力		電	圧	DC24V
)	\	力		電	流	7mA
紙	色	縁		方	式	フォトカプラ絶縁
	適	応	接	続	先	PLC の出力(シンクタイプトランジスタ出力)

内部回路構成

コントローラ内

外部に無接点回路を接続される場合、スイッチOFF時の1点当たりの漏洩電流は1mA以下として下さい。


機械式接点(リレー、スイッチ等)を接続される場合は、微小電流用の物をご使用下さい。

4.5.2 外部出力仕様

項目	仕 様
定格負荷電圧	DC24V
最大負荷電流	20mA/1 点
漏れ電流	0.1mA 以下
絶 縁 方 式	フォトカプラ絶縁
適応接続先	PLCの入力(シンクタイプ) 小型電磁弁など

内部回路構成

コントローラ内

本出力素子は、負荷短絡もしくは定格以上の電流が流れた場合は、内部回路が破損します。

負荷にリレー等の誘導負荷を接続される場合は、リレーの負荷電流をご確認の上 ご使用下さい。また、コイルに逆起電力吸収用ダイオードを必ず接続して下さい。

4.5.3 外部入出力コネクタ

	λ カ			出力			
ピン No .	線色	信号名	名称	ピン No .	線色	信号名	名称
1A	1 - チャ		電源入力 + 24	15A	3 - シロ	ALM	アラーム
1B	1 - アカ	STB	スタート	15B	3 - クロ	RDY	レディ
2A	1 - オレンジ	STOP	動作停止	16A	4 - チャ	IN-P	位置決め完了
2B	1 - ‡	GRP	グループ	16B	4 - アカ	OUT1	出力 1
3A	1 - ミドリ	EMG	非常停止 b 接	17A	4 - オレンジ	0UT2	出力 2
3B	1 - アオ	RES	リセット入力	17B	4 - ‡	OP1	位置出力 1
4A	1 -	IP1	位置選択 1	18A	4 - ミドリ	OP2	位置出力 2
4B	1 - ハイ	IP2	位置選択 2	18B	4 - アオ	OP4	位置出力 4
5A	1 - シロ	IP4	位置選択 4	19A	4 - ፈንታት	OP8	位置出力 8
5B	1 - クロ	IP8	位置選択 8	19B	4 - ハイ	0P10	位置出力 10
6A	2 - チャ	IP10	位置選択 10	20A	4 - シロ	0P20	位置出力 20
6B	2 - アカ	IP20	位置選択 20	20B	4 - クロ	0P40	位置出力 40
7A	2 - オレンジ	IP40	位置選択 40	21A	5 - チャ	0P80	位置出力 80
7B	2 - ‡	IP80	位置選択 80	21B	5 - アカ	0P100	位置出力 100
8A	2 - ミドリ	IP100	位置選択 100	22A	5 - オレンジ	0P200	位置出力 200
8B	2 - アオ	IP200	位置選択 200	22B	5 - ‡	0P400	位置出力 400
9A	2 - ፈ ን ታ‡	IP400	位置選択 400	23A	5 - ミドリ	0P800	位置出力 800
9B	2 - ハイ	IP800	位置選択 800	23B	5 - アオ	EXP-0UT1	拡張出力 1
10A	2 - シロ	EXP-IN1	拡張入力1	24A	5 - 45 #‡	EXP-0UT2	拡張出力 2
10B	2 - クロ	EXP-IN2	拡張入力 2	24B	5 - ハイ	EXP-0UT3	拡張出力3
11A	3 - チャ	EXP-IN3	拡張入力3	25A	5 - シロ	EXP-0UT4	拡張出力4
11B	3 - アカ	EXP-IN4	拡張入力4	25B	5 - クロ		電源入力 0V
12A	3 - オレンジ		未使用				
12B	3 - ‡		未使用				
13A	3 - ミドリ		未使用				
13B	3 - アオ		未使用				
14A	3 - ムラサキ		未使用				
14B	3 - ハイ		未使用				

コネクタ コントローラ側: X G 4 A - 5 0 3 4 < OMRON> ケーブル側 : X G 4 M - 5 0 3 0 - T < OMRON> フラットケーブル 5 0 芯 2 m付属

4.5.4 入力信号の詳細

スタート <STB>

移動開始信号です。30msec 以上の信号を入力してください。 本信号の立ち上がりで位置選択を読み取り、移動を開始します。

動作停止<STOP> または、一時停止 <PAUSE> (初期設定は 動作停止<STOP>) 本信号の機能は、特殊パラメータ:STOP/PAUSE によって決定します。

動作停止

位置決め動作を中止します。

詳細は、4.8.3 位置決め動作の停止 を参照ください。

一時停止

入力 ON で位置決め動作を一時停止後、入力 OFF で動作を継続します。 詳細は、4.8.4 位置決め動作の一時停止 を参照ください。

グループ選択 <GRP>

位置選択入力を、グループ No.選択として使用するための切り替え信号入力です。 パラメータの設定により、グループ選択は禁止とすることもできます。

非常停止 <EMG>

非常停止信号はb接点入力です。非常停止では、移動中は瞬時停止となります。 30msec 以上の信号を入力してください。

リセット <RES>

アラームのリセット信号です。

アラーム時に、ON OFF することで、アラームから復帰します。

位置選択 1~800 <IP1~IP800>

BCD3 桁で、移動する位置 No.を選択します。位置 No.は 1~999 です。

位置 No.0 は原点復帰を行ないます。

もう一つの機能として、グループ No.の選択があります。 のグループ選択<GRP>が ON の場合は、位置 No.ではなくグループ No.の選択になります。 グループ No.は、1~99 です。

拡張入力 1~4 <EXP-IN1~EXP-IN4>

シーケンスマクロ機能で使用する入力です。

詳細は 4.7 シーケンスマクロ機能 の項を参照ください。

4.5.5 出力信号の詳細

アラーム <ALM>

正常時はOFF、アラーム発生時にON します。

アラームの詳細は **7.アラーム** の項を参照ください。

レディ <RDY>

電源投入後セルフチェック等を行い、エラーがない状態で ON します。 アラーム発生時に OFF します。

位置決め完了 <IN-P>

位置決め動作完了出力で、動作中 OFF、停止中 ON となります。

電源投入時には ON になっています。

動作確認信号としてご使用ください。

OUT 出力 1、OUT 出力 2 < OUT1, OUT2>

各位置データに設定された出力の内容により、位置決め完了出力と同時に ON します。 次のスタート入力<STB>が ON し、移動開始にて OFF します。

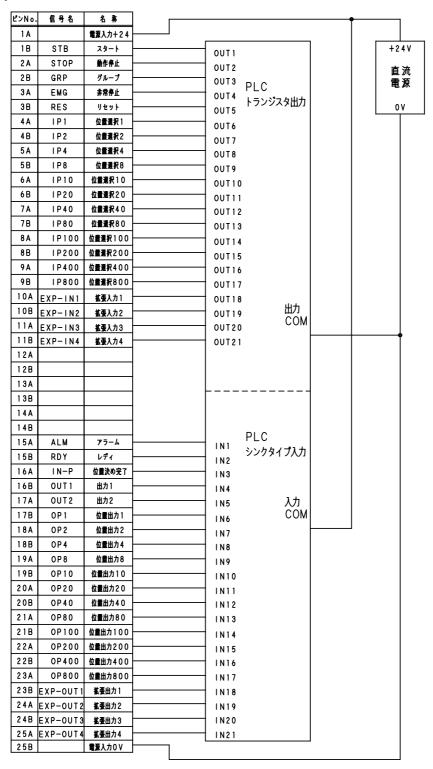
位置出力 1~800 < OP1~ OP800>

指定された位置 No. へ移動後に、移動した位置 No. を BCD3 桁で出力します。動作停止入力<STOP>によって減速停止した場合は、出力されません。パラメータの設定により、アラーム時(ALM 出力 ON)にはアラームコードをを出力することもできます。(16 進で出力)

拡張出力 1~4 <EXP-OUT1~EXP-OUT4>

シーケンスマクロ機能で使用する出力です。

詳細は 4.7 シーケンスマクロ機能 の項を参照ください。



供給される電源電圧(24V)の立ち上がりが遅い場合、電源投入時に出力が 瞬時ONする場合があります。

電源投入時は、レディ出力<RDY>または、位置決め完了出力<IN-P>のONを確認してから、他の出力信号を見るようにしてください。

4.5.6 外部入出力 接続例

(1) I / OとPLCの接続例

非常停止はb接点入力です。

使用されない入出力信号及び、未使用の信号は端末処理を行い他の信号線と接触 しないようにしてください。

4.6 グループ機能

4.6.1 グループ機能とは

グループ機能は位置決め動作を連続して行なうための機能です。

通常、一回の位置決め動作に対して一回のスタート信号を入力する必要がありますが、 グループ機能を使用すれば、予め設定した開始位置 No.から終了位置 No.を、1回の

スタート信号で実行することができます。

【通常の動作の場合】 1 2 3

スタート信号

【グループ動作の場合】 1 2 3

スタート信号

4.6.2 グループ登録について

グループ番号は 1 から 9 9 で、 9 9 種類の設定ができ、各グループで開始位置 No. と終了位置 No. を設定します。(初期値 開始位置 No. 1、終了位置 No. 1)

例 1) グループ No. 1 : 開始位置 No. 5 終了位置 No. 1 0 位置 No. 5 から位置 No. 1 0までを連続的に動作します。

例 2) グループ No. 2 : 開始位置 No. 1 5 終了位置 No. 1 5 位置 No. 1 5 のみを動作します。

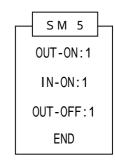
4.6.3 グループ機能使用の注意点(外部入出力)

- (1)グループ機能を使用した場合、位置 No.出力、位置決め完了出力、OUT 出力は終了位置 No.が動作完了した時に、出力されます。 途中の位置では出力されません。 但し、シーケンスマクロ機能は実行されます。
- (2)グループ機能実行中の動作停止<STOP>は、現在実行中の移動を減速停止し、 位置決め完了出力<IN-P>のみ ON します。再スタート時、停止前と同じ グループ No.が指定された場合は、動作を継続します。 グループ No.が異なったり、グループ指令がない場合は、継続しません。
- (3)グループ No.0 は登録できませんが、外部入出力でグループ No.0 を指定した場合は、原点復帰を行います。

4.7 シーケンスマクロ機能

4.7.1 シーケンスマクロ機能とは

シーケンスマクロ機能(以下SM)は、あらかじめ作成しておいたシーケンスを移動後に 実行する機能です。この機能をPLC等とのインターフェースに使用したり、センサや 電磁弁などを接続して制御することができます。


- ・SMは1~20の、20種類を登録でき、1つのSMには16ステップが作成できます。
- ・使用する I/O は、S M専用に入力 4点 (EXT-IN1~4) 出力 4点 (EXT-OUT1~4) です。
- ・SMは1~20の番号を位置データに設定することで実行します。 SM設定の0は、SMを実行しません。

使用用途

外部機器とのインターフェース

PLCなどの外部機器に対し、各位置で入出力のインターフェースを行う例です。

位置 No.	1 軸目	2 軸目	3 軸目	4 軸目	SM
1	10.000	5.000	100.000	150.000	5
2	20.000	100.000	100.000	250.000	5
3	30.000	150.000	100.000	350.000	5
7	0.000	0.000	0.000	0.000	5

センサや電磁弁などを接続して制御

下表では、位置 No. 1、5 に S M 1、位置 No. 3、7 に S M 2を設定した例です。 S M 1 には「つかむ動作」を、S M 2 には「はなす動作」をプログラムします。

位置 No.	1 軸目	2 軸目	3 軸目	4 軸目	SM	S M 1
1	10.000	5.000	100.000	150.000	1	つかむ
2	20.000	100.000	100.000	250.000	0	1
3	30.000	150.000	100.000	350.000	2	
4	100.000	50.000	200.000	400.000	0	X
5	100.000	100.000	300.000	350.000	1	S M 2
6	200.000	150.000	400.000	250.000	0	はなす
7	0.000	0.000	0.000	0.000	2	

4.7.2 SMの命令

SMには次のような命令があります。

	命令	データ	内 容
1	IN-ON	1~4	データに設定した No.の拡張入力 ON 待ち
2	IN-OFF	1 ~ 4	データに設定した No.の拡張入力 OFF 待ち
3	OUT-ON	1~4	データに設定した No.の拡張出力を ON する
4	OUT-OFF	1~4	データに設定した No.の拡張出力を OFF する
5	TIMER	1~9	データに設定した値だけ待つ 1:0.1秒
6	TIMER10	1~9	データに設定した値だけ待つ 1:1秒
7	END		終了。プログラムの最後に必要です。

使用できる入出力 入力:拡張入力1~4(EXT-IN1~4)

出力:拡張出力1~4(EXT-OUT1~4)

4.7.3 SMのプログラム例

つかむ動作と、はなす動作の例を下表に示します。

入力信号、出力信号をそれぞれ次のように割り当てます。

【入力】EXP-IN1 : チャック閉確認センサ EXP-IN2 : チャック開確認センサ

【出力】EXP-OUT1:チャック閉出力

SM1 つかむ動作

ステップ゜No.	命令	データ	内容
1	OUT-ON	1	チャック閉出力 ON
2	IN-ON	1	チャック閉確認センサON待ち
3	TIMER	2	タイマー0.2 秒
4	END		

SM2 はなす動作

ステップ [°] No.	命令	データ	内容
1	OUT-OFF	1	チャック閉出力 OFF
2	IN-ON	2	チャック開確認センサON待ち
3	TIMER	2	タイマー0.2 秒
4	END		

4.7.4 SM使用の注意点

(1) IN - ON、IN - OF F命令について

IN-ON、IN-OFFの入力信号待ち命令では、入力信号がONまたはOFFしない場合、そのステップで永久に待ち状態になってしまいます。そこで、一定時間入力がONまたはOFFしない場合は、アラームにすることができます。

アラームにする / しないの選択とアラームまでの時間設定は、パラメータで行ないます。 **8.パラメータ** の項を参照ください。

(2)OUT-ON、OUT-OFF命令について

OUT - ON命令により出力した場合、OUT - OFF命令が実行されるまでONを保持します。

(3) TIMER命令について

TIMER 命令には 0.1 秒単位と、1 秒単位の 2 種類があります。

TIMER 命令は最大 0.9 秒、TIMER10 命令は最大 9 秒です。

それ以上の値が必要な場合は、タイマー命令を連続して使用してください。

(4) SM作成

S Mの作成は、パソコンソフト(X A - P 4) ジョグボックス(X A - J B) にて行ないます。

(5)動作停止入力<STOP>によるSMの中止

S M実行中に動作停止<STOP>が ON すると、S Mを中止して位置決め完了<IN-P>が ON します。

下図の例では IN-ON 命令の時に、動作停止<STOP>を ON して、入力待ちをキャンセルしました。

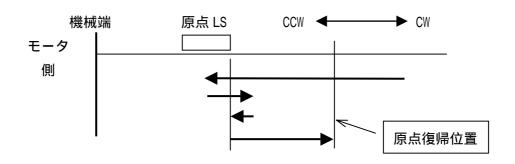
ステップ	命令	データ	内容
1	OUT-ON	1	チャック閉出力 ON
2	IN-ON	1	チャック閉確認センサ ON 待ち
3	TIMER	2	१/२-0.2 秒
4	END		

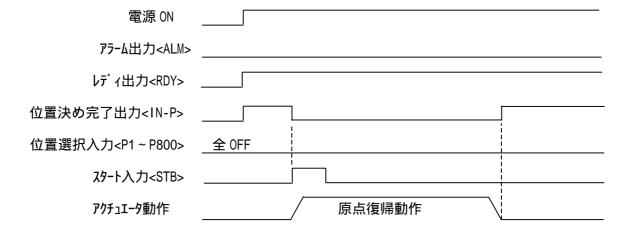
STOP

動作停止から同じ位置 No.を指定してスタート<STB>を ON すると、再度 S Mを先頭から実行します。(グループ指定の場合も同様)

動作停止後の再スタートの詳細は、 4 . 8 . 3 位置決め動作の停止 を参照 ください。

4.8 外部入出力 タイムチャート


4.8.1 原点復帰


電源投入後、アクチュエータを機械原点へ移動し、現在位置を 0 クリアーする動作です。 位置選択入力が全て OFF で、スタート入力<STB>ON にて、原点復帰動作を開始します。

原点 LS が ON するまで後退して停止します。 (移動速度: HOME VEL) 原点 LS が OFF するまで前進して停止します。 (移動速度: HOME PUSHVEL) 原点 LS が ON するまでパルス送りで後退します。

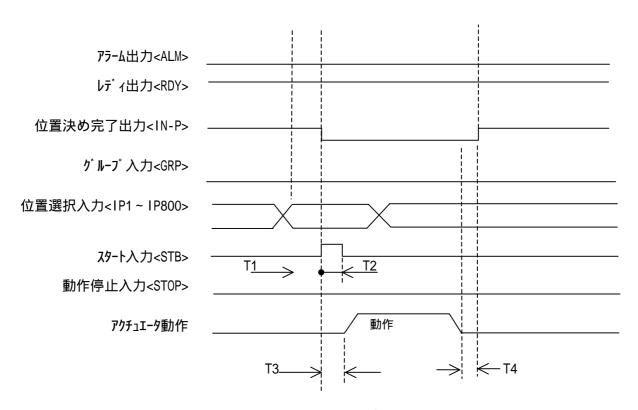
オフセット量 (HOME OFFSET) 前進します。 (移動速度: HOME OFSVEL)

~ の動作を4軸共に原完了して位置決め完了出力<IN-P>が ON します。

- ・スタート入力<STB>は、位置決め完了出力が ON するまで出力するか、30msec 以上のパルスで入力してください。
- ・動作停止入力<STOP>、リセット入力<RES>が ON している時は、スタート入力<STB>を ON しても動作しません。
- ・動作停止入力<STOP>は、原点復帰中は無効です。

4.8.2 位置決め動作

位置決め動作の手順


位置選択を入力します。

スタート入力<STB>を ON します。

位置決め完了出力<IN-P>がOFF し、移動を開始します。

移動完了後、シーケンスマクロが設定されている場合は、シーケンスマクロを 実行します。

シーケンスマクロ実行後、位置決め完了出力<IN-P>と位置No.出力がONします。 又、出力が設定されている時はその出力もONします。

動作停止入力<STOP>と、リセット入力<RES>が ON している時は、スタート入力<STB>を ON しても動作しません。

記号	内 容	時間
T 1	位置選択確定から動作指令入力までの時間	最小 10msec
T 2	動作指令入力 最小入力時間	最小 30msec
T 3	動作指令入力 ON からアクチュエータが動作するまでの時間	最大 50msec
T 4	アクチュエータ動作完了から位置決め完了出力が ON するまでの時間	最大 10msec

原点復帰が完了していない場合は、原点復帰動作を行った後位置決め動作を行ないます。

4.8.3 位置決め動作の停止

位置決め動作中、動作停止入力<STOP>を ON すると減速停止します。

(1)位置決め動作の停止手順

位置選択を入力します。

スタート入力<STB>を ON します。


位置決め完了出力<IN-P>がOFFし、移動を開始します。

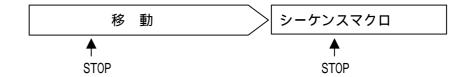
動作停止入力<STOP>を ON します。

移動を中止し減速停止後、位置決め完了出力<IN-P>が ON します。

出力・シーケンスマクロが設定されていても実行しません。

位置 NO.出力も ON しません。

動作停止入力信号は、30msec以上の信号で入力してください。


(2)動作中止後の再スタート

動作中止後は、そのまま継続するか、別の動作に移行するかを選択することができます。

【そのまま継続】

位置選択入力を変えずにスタート入力<STB>をONします。

継続のしかたは、下図のように動作停止<STOP>が入力した状態で変わります。

の場合は停止位置から移動を継続します。

の場合はシーケンスマクロの先頭ステップから継続します。

シーケンスマクロ

【別の動作に移行】

別の動作に移行したい場合は、位置選択入力を替えスタート入力<STB>をON します。

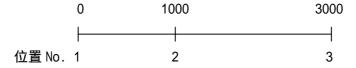
ご注意

シーケンスマクロ内で ON した拡張出力信号<EXP-OUT1 ~ 4>は、動作中止してもそのまま ON を保持します。

【そのまま継続】、【別の動作に移行】のいずれの場合も、出力 ON の信号は OFF しませんので、ご注意ください。

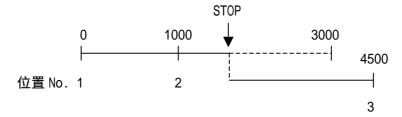
(3)動作中止後の再スタートでの注意事項

位置データの移動方法設定が2:<+INC> または3:<-INC>の位置No.へ移動中に移動停止し、再スタートした場合は、停止位置から設定量移動しますのでご注意ください。


下表の設定にて動作停止しない場合と、動作停止後の再スタートの例を示します。

位置 No.	速度	加減速	移動方法	移動位置	OUT 出力	SM No.
1	100	3	1 <abs></abs>	0	0	0
2	100	3	1 <abs></abs>	1000	0	0
3	100	3	3 <+INC>	2000	0	0

動作停止なしの場合


位置 No.2 を実行:1000 へ移動

位置 No.3 を実行:1000 + 2000 で 3000 へ移動

動作停止した場合

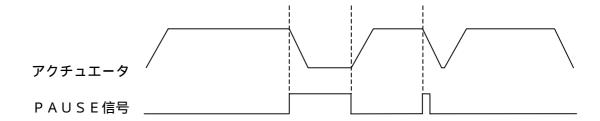
位置 No.3 を実行中に動作停止<STOP>を ON し、1500 の位置で停止 再度位置 No.3 を実行すると、1500 + 2000 で 4500 へ移動

4.8.4 位置決め動作の一時停止

位置決め動作中、一時停止入力<PAUSE>を ON すると一時停止します。

一時停止入力<PAUSE>を OFF すると位置決め動作を再開します。

(1)位置決め動作の一時停止手順


位置決め動作中、一時停止入力<PAUSE>を ON します。

移動を中止し減速停止します。

一時停止入力<PAUSE>を OFF します。

移動を再開します。

- 一時停止入力<PAUSE>を ON した後、アクチュエータが停止する前に
- 一時停止入力<PAUSE>を OFF した場合は、停止になってから、動作を再開します。

一時停止入力<PAUSE>がONしている時は、動作指令入力<STB>をONしても動作しません。

(2)シーケンスマクロに対する PAUSE信号

シーケンスマクロ実行中に一時停止入力<PAUSE>が ON されても、シーケンスマクロは続行します。

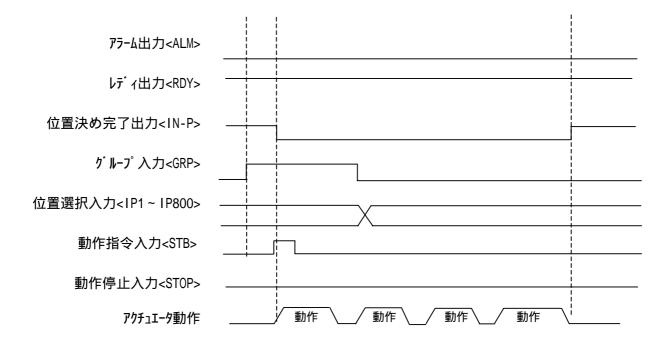
シーケンスマクロ実行後に位置決め完了となります。

4 . 8 . 5 グループ機能による位置決め動作

グループ No. による動作の手順

位置選択を入力し、グループ入力<GRP>を ON します。

この場合の位置選択入力はグループ No.となります。


スタート入力<STB>を ON します。

位置決め完了出力<IN-P>がOFF し、移動を開始します。

グループで設定されている位置を連続して動作します。

各位置でシーケンスマクロは実行されますが、位置決め完了<IN-P>、OUT 出力、 位置出力は ON しません。

最後の移動が完了後、位置決め完了出力、OUT出力、位置出力がONします。

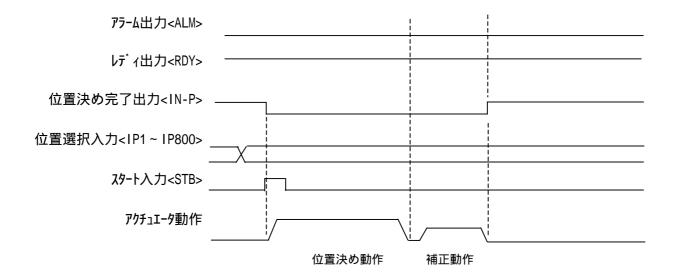
動作中止入力<STOP>、リセット入力<RES>が ON している時は、スタート入力<STB>を ON しても動作しません。

グループ機能の詳細は、4.6 グループ機能 の項を参照ください。

4.8.6 位置補正動作(エンコーダ付きアクチュエータ使用の場合)

エンコーダ付きアクチュエータを使用されると位置補正動作を行なうことができます。 位置補正動作は、動作指令パルス数と、移動によりフィードバックされたパルス数を 比較し、動作停止後に位置ずれ量を補正するものです。*1

また、偏差設定値以上の位置ずれを検知した場合は、偏差アラームとなります。


(1)位置補正動作の説明

動作指令パルス数と、移動によりフィードバックされたパルス数を比較し、 位置決め動作停止後に偏差を確認します。

2パルス以上の偏差があった場合、偏差量が \pm 1パルスになるまで低速で補正動作を行ないます。補正動作時は速度1(166pps)です。*2位置決め完了出力 \pm 1N-P>は補正動作が終了するまで ON しません。

位置決め動作完了。

偏差を確認し、偏差がある場合は補正動作を行ないます。 補正動作完了で位置決め完了<IN-P>が ON します。

(2) 停止中の位置補正動作

停止中に、外力により位置がずれた場合も、位置補正動作を行ないます。 この場合も、位置補正の間は位置決め完了出力<IN-P>が OFF します。

- *1 常時フィードバックをかけて位置補正を行なうものではありません。
- *2 偏差が±1パルスの場合は、補正動作は行ないません。

(3)偏差アラーム

次の場合は補正動作を行なわずに偏差アラームとなり、アラーム出力<ALM>がON します。

機械的に干渉したり、負荷が増加したなどの理由で位置ずれが大きな場合は、偏差量が偏差設定値以上になった場合)は、偏差アラームとなります。

偏差設定値以上の補正をした場合

補正動作中、偏差アラーム値を超えても偏差が±1以内にならない場合は 機械的に干渉があると判断し、偏差アラームとなります。

偏差アラームの発生で動作を中止し、CODE 表示部に 5 . を表示します。 アラームの詳細は、7 . 1 . 2 アラーム 2 を参照ください。

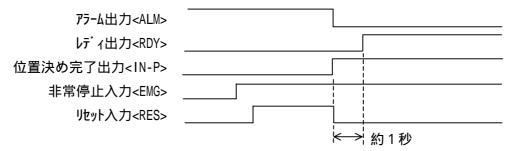
(4)偏差アラーム値の設定

偏差アラーム値は、5~65535パルスの範囲で設定できます。 設定はパラメータの「PGALM」にて設定します。

(5)機能選択

パラメータの設定により次の3種類の機能を選択できます。 また、この機能選択は各軸で単独に設定できます。

設定はパラメータの「 PG FUNCTION 」にて設定します。


設定	内 容
0	偏差アラーム検出、位置補正共になし(エンコーダ無し) エンコーダ無しの場合の設定です。 エンコーダ付きアクチュエータを使用しても、本設定にした場合は、エンコーダ無しとして動作します。
1	偏差アラーム検出のみ(エンコーダ有り) 偏差アラーム検出は行ないますが、位置補正動作は行ないません。
2	偏差アラーム検出 + 位置補正動作(エンコーダ有り) 偏差アラーム検出と位置補正動作を行ないます。

4.8.7 非常停止について

(1) 非常停止入力<EMG>の開放で非常停止となり、次のような状態となります。

(非常停止は b 接点入力です)

- ・アクチュエータは急停止し、カレントダウンします。
- ・アラーム出力<ALM>が ON します。
- ・レディ出力<RDY>、位置決め完了<IN-P>はOFFします。
- ・OUT 出力<OUT1,OUT2>、位置出力<OP1 ~ OP800>は OFF します。 但し、アラームコード出力が有効の場合は、アラームコードを出力します。
- ・シーケンスマクロ用拡張出力<EXP-OUT1~EXP-OUT4>はOFFします。
- (2) 非常停止からの復帰は、リセット入力<RES>または、電源の再投入にて行ってください。
- (3) リセット入力による非常停止の復帰は、リセット入力の ON OFF で復帰します。

非常停止の状態でもアクチュエータは通電されていますので、 異常時は非常停止のまま長時間放置せず電源を遮断してください。

動作中に、非常停止せずに電源を遮断した場合は、慣性によりスライダが即時 停止しないことがあります。

緊急の場合は、非常停止とした後、電源を遮断してください。

電源投入時、レディ出力がONするまでの間は非常停止を無視します。 PLCなどに非常停止信号を接続される場合は、この間に非常停止信号を 入力(閉)してください。

4.9 位置データ

4.9.1 位置データの概要

位置データは位置No.1~999に999種類登録できます。

位置データには、下表のような設定を行ないます。

移動位置の設定単位は、「mm」または「パルス数」のいずれかを選択できます。 下表はmmでの設定例です。

例)

位置		1	軸		2 軸			
No.	速度	加減 速	移動 方法	移動 位置	速度	加減 速	移動 方法	移動 位置
30	60	3	1	23.450	15	2	2	50.300

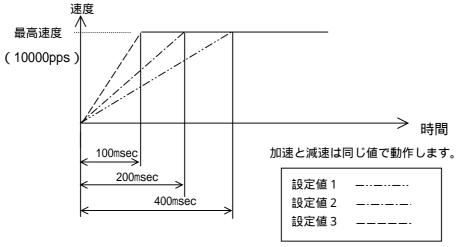
	. 3	3 軸		4軸				補間	OUT	SM
速度	加減 速	移動 方法	移動 位置	速度	加減 速	移動 方法	移動 位置	有無	出力	No.
30	3	3	120.450	45	1	0	85.750	0	3	4

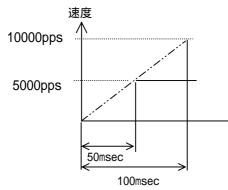
4.9.2 各設定の詳細

(1)速度

移動時の速度は、1~60の60種類から選択する方法で設定します。

速度は、1秒間あたりに出力するパルス量です。

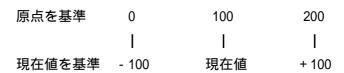

実際に動作する速度はアクチュエータのタイプにより異なるため注意願います。 mm/sec 換算値は 4 . 9 . 3 速度設定値換算表 をご覧ください。


(2)加減速

移動時の加速及び減速時間で、次の3つの値から選択する方法で設定します。

設定値	内	容
1	低加減速	400msec
2	中加減速	200msec
3	高加減速	100msec

加減速は、アクチュエータの最高速度までの加速(減速)にかかる時間です。


加減速の設定が3で、速度設定が10000ppsの場合は、加速・減速時間は100msecです。

加減速の設定が3で、速度設定が5000ppsの場合は、加速・減速時間は50msecとなります。

(3)移動方法

移動方法は、次の4種類の設定があります。

設定	内 容
0	動作なし 動作しません。移動位置のデータは無視されます。
1 <abs></abs>	原点を基準として「移動位置」へ位置決め
2 <+1NC>	現在位置から、 + 側に「移動位置」の設定量移動
3 <-INC>	現在位置から、 - 側に「移動位置」の設定量移動

(4)移動位置

移動位置には、移動する位置を「mm」または、「パルス数」で設定します。 ジョグボックス(XA-JB)、パソコンソフト(XA-P4)を使用し、JOG モードで実際にアクチュエータを動作させて位置を設定する方法と、POSモードのMDI機能で、数値による設定が行えます。

移動位置の数値は、(3)移動方法 の設定値によって意味が変わりますので、 ご注意ください。

(5)補間有無

補間有無は、4軸の直線補間動作の設定を行ないます。

設定値	内 容					
0	補間動作は行ないません。					
1	直線補間を行ないます。速度・加減速は、1軸の値	 りで動作します。				

補間動作の補足

補間動作の場合、複数軸が同時スタート・同時停止になりますが、実際は 長軸・短軸の比率による、パルスの比例分配で動作するため停止のタイミングに 下表のような誤差(ずれ)が生じます。

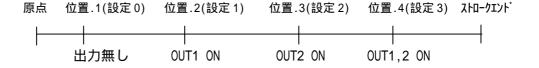
誤差最大値

	加減速 3	加減速 2	加減速 1	
	(100msec)	(200msec)	(400msec)	
停止のずれ	15msec	30msec	60msec	

(6)OUT出力

出力は、移動完了時に OUT1、OUT2 の出力信号の ON/OFF を設定するものです。 下図、例 1 のように位置 1 で OUT1 を ON、位置 2 で OUT2 を ON するような設定を 行えば位置 1、位置 2 へ到着した確認として使用できます。

設定は次の4つの値から選択する方法で設定します。


設定値	動作	設定値	動作
0	出力無し	2	OUT2 ON
1	OUT1 ON	3	OUT1,OUT2 両方 ON

(例1) 2ヶ所で別々の出力を ON します。

位置 . 1 への動作完了時 OUT1 が ON し位置 . 2 への動作完了時 OUT2 が ON します。また、各動作開始時に OUT1, OUT2 は自動的に OFF となります。

(例2) 4ヶ所でおのおの出力を ON 又は、OFF します。

(7) シーケンスマクロNo.

シーケンスマクロNo.の設定は、実行するシーケンスマクロの番号を設定します。 0を設定した場合、シーケンスマクロは機能しません。

シーケンスマクロの詳細は 4.7 シーケンスマクロ機能 を参照ください。

4.9.3 アクチュエータ別 速度設定値換算表

アクチュエータ別の速度設定値と mm/sec の換算を示します。

尚、このデータは参考値で速度精度を保証するものではありません。

: XA-20L XA-28L XA-35L XA-42L XA-E35L

: XA-28H XA-35H

: XA-42H XA-42D は の 2 倍となります。

単位 mm/sec

								半 加	mm/sec
速度 No.	PPS				速度 No.	PPS			
1	166	0.8	2.5	3.3	31	5166	25.8	77.5	103.2
2	333	1.7	5.0	6.8	32	5333	26.7	80.0	106.8
3	500	2.5	7.5	10.0	33	5500	27.5	82.5	110.0
4	666	3.3	10.0	13.2	34	5666	28.3	85.0	113.2
5	833	4.2	12.5	16.8	35	5833	29.2	87.5	116.8
6	1000	5.0	15.0	20.0	36	6000	30.0	90.0	120.0
7	1166	5.8	17.5	23.2	37	6166	30.8	92.5	123.2
8	1333	6.7	20.0	26.8	38	6333	31.7	95.0	126.8
9	1500	7.5	22.5	30.0	39	6500	32.5	97.5	130.0
10	1666	8.3	25.0	33.2	40	6666	33.3	100.0	133.2
11	1833	9.2	27.5	36.8	41	6833	34.2	102.5	136.8
12	2000	10.0	30.0	40.0	42	7000	35.0	105.0	140.0
13	2166	10.8	32.5	43.2	43	7166	35.8	107.5	143.2
14	2333	11.7	35.0	46.8	44	7333	36.7	110.0	146.8
15	2500	12.5	37.5	50.0	45	7500	37.5	112.5	150.0
16	2666	13.3	40.0	53.2	46	7666	38.3	115.0	153.2
17	2833	14.2	42.5	56.8	47	7833	39.2	117.5	156.8
18	3000	15.0	45.0	60.0	48	8000	40.0	120.0	160.0
19	3166	15.8	47.5	63.2	49	8166	40.8	122.5	163.2
20	3333	16.7	50.0	6.8	50	8333	41.7	125.0	166.8
21	3500	17.5	52.5	70.0	51	8500	42.5	127.5	170.0
22	3666	18.3	55.0	73.2	52	8666	43.3	130.0	173.2
23	3833	19.2	57.5	76.8	53	8833	44.2	132.5	176.8
24	4000	20.0	60.0	80.0	54	9000	45.0	135.0	180.0
25	4166	20.8	62.5	83.2	55	9166	45.8	137.5	183.2
26	4333	21.7	65.0	86.8	56	9333	46.7	140.0	186.8
27	4500	22.5	67.5	90.0	57	9500	47.5	142.5	190.0
28	4666	23.3	70.0	93.2	58	9666	48.3	145.0	193.2
29	4833	24.2	72.5	96.8	59	9833	49.2	147.5	196.8
30	5000	25.0	75.0	100.0	60	10000	50.0	150.0	200.0